Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.07.11.22277368

ABSTRACT

Antibodies can have beneficial, neutral, or harmful effects so resolving an antibody repertoire to its target epitopes may explain heterogeneity in susceptibility to infectious disease. However, the three-dimensional nature of antibody-epitope interactions limits discovery of important targets. We describe and experimentally validated a computational method and synthetic biology pipeline for identifying structurally stable and functionally important epitopes from the SARS-CoV-2 proteome. We identify patterns of antibodies associated with immunopathology, including a non-isotype switching IgM response to a membrane protein epitope strongly associated with severe COVID-19 (adjusted OR 72.14, 95% CI: 9.71 - 1300.15). We suggest the mechanism is T independent B cell activation and identify persistence (> 1 year) of this response in individuals with long COVID particularly affected by fatigue and depression. These findings may have implications for the ongoing medical and public health response to the pandemic.


Subject(s)
COVID-19 , Fatigue , Depressive Disorder , Communicable Diseases
2.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.06.06.22275865

ABSTRACT

Both infection and vaccination, alone or in combination, generate antibody and T cell responses against SARS-CoV-2. However, the maintenance of such responses - and hence protection from disease - requires careful characterisation. In a large prospective study of UK healthcare workers (PITCH, within the larger SIREN study) we previously observed that prior infection impacted strongly on subsequent cellular and humoral immunity induced after long and short dosing intervals of BNT162b2 (Pfizer/BioNTech) vaccination. Here, we report longer follow up of 684 HCWs in this cohort over 6-9 months following two doses of BNT162b2 or AZ1222 (Oxford/AstraZeneca) vaccination and following a subsequent BNT162b2 booster vaccination. We make three important observations: Firstly, the dynamics of humoral and cellular responses differ; binding and neutralising antibodies declined whereas T and B cell responses were better maintained after the second vaccine dose. Secondly, vaccine boosting restored IgG levels to post second dose levels and broadened neutralising activity against variants of concern including omicron BA.1, alongside further boosting of T cell responses. Thirdly, prior infection maintained its impact driving larger T cell responses compared to never infected people, including after the third dose. In conclusion, the maintenance of T cell responses in time and against variants of concern may account for continued protection against severe disease.


Subject(s)
COVID-19 , Hallucinations
3.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.02.05.22270447

ABSTRACT

Background: T cell responses to SARS-CoV-2 following infection and vaccination are less characterised than antibody responses, due to a more complex experimental pathway. Methods: We measured T cell responses in 108 healthcare workers (HCWs) in an observational cohort study, using the commercialised Oxford Immunotec T-SPOT Discovery SARS-CoV-2 assay (OI T-SPOT) and the PITCH ELISpot protocol established for academic research settings. Results: Both assays detected T cell responses to SARS-CoV-2 spike, membrane and nucleocapsid proteins. Responses were significantly lower when reported by OI T-SPOT than by PITCH ELISpot. Four weeks after two doses of either Pfizer/BioNTech BNT162b or ChAdOx1 nCoV-19 AZD1222 vaccine, the responder rate was 63% for OI T-SPOT Panels1+2 (peptides representing SARS-CoV-2 spike protein excluding regions present in seasonal coronaviruses), 69% for OI T-SPOT Panel 14 (peptides representing the entire SARS-CoV-2 spike), and 94% for the PITCH ELISpot assay. The two OI T-SPOT panels correlated strongly with each other showing that either readout quantifies spike-specific T cell responses, although the correlation between the OI T-SPOT panels and the PITCH ELISpot was moderate. Conclusion: The standardisation, relative scalability and longer interval between blood acquisition and processing are advantages of the commercial OI T-SPOT assay. However, the OI T-SPOT assay measures T cell responses at a significantly lower magnitude compared to the PITCH ELISpot assay, detecting T cell responses in a lower proportion of vaccinees. This has implications for the reporting of low-level T cell responses that may be observed in patient populations and for the assessment of T cell durability after vaccination.

4.
ssrn; 2021.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3941809

ABSTRACT

Background: Patients with end-stage renal disease (ESRD) are vulnerable to SARS-CoV-2 infection and mount poor antibody responses to standard vaccines. We addressed whether ESRD patients could mount immune responses that protected against re-infection following natural SARS-CoV-2 infection or 2-dose vaccination.Methods: Haemodialysis (HD and renal transplant patients were recruited following SARS-CoV-2 infection (n=46) or before SARS-CoV-2 vaccination (n=94). SARS-CoV-2 IgG responses, surrogate neutralising antibody (NAb) titres to wildtype and VOCs, T cell responses and viral sequencing in the vaccine-naïve convalescent cohort were serially assessed following infection. Surrogate NAb titres were measured pre-vaccination and 33 days after 2nd vaccine. Incidence of breakthrough infection was assessed 180 days following 1st vaccination. Findings: 22% of vaccine-naive HD (n=9/36) and transplant patients (n=1/10) demonstrated PCR-positive re-infection (RI) at median 212 days (IQR 140-239) post 1st infection. Prior to RI episodes, RI patients demonstrated poor IgG Spike and RBD responses which were equivalent to levels in pre-pandemic sera (median RI titres: Spike 187 AU/ml, IQR 143-3432, p=0.96; RBD 145 AU/ml, IQR 85-938, p>0.99), unlike patients who developed a single infection only (SI) when compared to pre-pandemic sera (median SI titres: Spike 22826 AU/ml, IQR 1255-63811, p<0.0001; RBD 9588 AU/ml, IQR 270-21616, p=0.001). IgG Spike and RBD titres increased following RI compared to pre-pandemic sera (median RI titres: Spike 22611 AU/ml, IQR 4488-75509, p=0.0006; RBD 6354 AU/ml, IQR 1671-20962, p=0.01). T cell analysis revealed no differences between RI and SI cohorts. Following 2-dose vaccination, 5% of the HD cohort who received AZD1222 (n=3/61) developed breakthrough infection at 6 months following 1st vaccination, unlike those who received BNT162b2 (n=0/16). AZD1222-vaccinated, infection-naïve (I-N) HD patients (n=32) and immunosuppressed transplant recipients (n=17) made poor NAb responses to wildtype, alpha, beta and gamma when compared to infection-experienced (I-E) HD patients (n=29) (I-N vs I-E HD wildtype p<0.0001, alpha p=0.0007, beta p<0.0001, gamma p=0.002). NAb responses improved with BNT162b2 vaccination (n=16); RI patients mounted larger NAb responses to AZD1222 vaccination than SI patients (wildtype p=0.01, alpha p=0.02, beta p<0.02). Interpretation: ESRD patients are highly susceptible to SARS-CoV-2 re-infection, or breakthrough infection following vaccination, associated with poor protective antibody responses. SARS-CoV-2-specific IgG and surrogate NAb responses increase with repeated exposure (infection experience and/or vaccination) in patients who survive infections. Our findings support the case for specific booster regimens in such immune-incompetent patients. Funding Information: Oxford Transplant Foundation, Oxfordshire Health Services Research Committee, UK Department of Health and Social Care, Huo Family Foundation, NIHR (COV19-RECPLAS), UK Coronavirus Immunology Consortium, NIHR Oxford Biomedical Research Centre, WT109965MA.Declaration of Interests: We declare no competing interestsEthics Approval Statement: Haemodialysis (HD) and transplant cohorts: In this prospective, observational cohort study, HD and transplant patients within Oxford University Hospitals NHS Foundation Trust(OUH) were recruited under Oxford Radcliffe Biobank approved studies, “Biomarkers to stratify risk in Renal Transplant Recipients and Dialysis Patients with Covid-19” (ref: ORB 20/A056), and “Immunological responses to COVID-19 vaccines in transplant and haemodialysis patients” (ref: ORB 21/A014). The Oxford Radcliffe Biobank has a favorable ethics opinion from the South Central Oxford Committee C (REC: 19/SC/0173). Healthcare Worker cohort (HC, PITCH study): PITCH is a sub-study of the SIREN study which was approved by the Berkshire Research Ethics Committee, Health Research 250 Authority (IRAS ID 284460, REC reference 20/SC/0230), with PITCH recognised as a sub-study on 2 December 2020. SIREN is registered with ISRCTN (Trial ID:252 ISRCTN11041050)The study was conducted in compliance with all relevant ethical regulations for work with human participants, and according to the principles of the Declaration of Helsinki (2008) and the International Conference on Harmonization (ICH) Good Clinical Practice (GCP) guidelines. Written informed consent was obtained for all patients enrolled in the study.


Subject(s)
COVID-19 , Kidney Failure, Chronic
5.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-734011.v1

ABSTRACT

NP 105-113 -B*07:02 specific CD8 + T-cell responses are considered among the most dominant in SARS-CoV-2-infected individuals. We found strong association of this response with mild disease. Analysis of NP 105-113 -B*07:02 specific T-cell clones and single cell sequencing were performed concurrently, with functional avidity and anti-viral efficacy assessed using an in vitro SARS-CoV-2 infection system, and were correlated with TCR usage, transcriptome signature, and disease severity (acute N=77, convalescent N=52). We demonstrated a beneficial association of NP 105-113 -B*07:02 specific T-cells in COVID-19 disease progression, linked with expansion of T-cell precursors, high functional avidity and anti-viral effector function. Broad immune memory pools were narrowed post-infection but NP 105-113 -B*07:02 specific T-cells were maintained 6 months after infection with preserved anti-viral efficacy to the SARS-CoV-2 Victoria strain, as well as new Alpha, Beta and Gamma variants. Our data shows that NP 105-113 -B*07:02 specific T-cell responses associate with mild disease and high anti-viral efficacy, pointing to inclusion for future vaccine design.


Subject(s)
COVID-19
6.
ssrn; 2021.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3873839

ABSTRACT

Background: COVID-19 vaccine supply shortages are causing concerns about compromised immunity in some countries as the interval between first and second dose extends. Conversely, countries with no supply constraints are considering administering a third dose. We assessed the persistence of immunogenicity after a single dose, the immunity after an extended interval between the first and second dose of ChAdOx1 nCoV-19(AZD1222), and the response to a third dose as a late booster. Methods: Volunteers aged 18-55 years who were enrolled in a Phase 1/2 or Phase 2/3 clinical trial of ChAdOx1 nCoV-19 and had received either a single dose or two doses of 5×10 10 viral particles were invited back for vaccination. Reactogenicity and immunogenicity of a delayed second dose or a third dose are reported here.Findings: Antibody titres after a single dose and measured on d362 remain higher than the titres measured on d0 (62.61 EU; 95% CI 47.43-82.64 vs 1 EU 95% CI 1-16). 30 participants received a late second dose of ChAdOx1 nCoV-19 (median 44 weeks after first dose), antibody titres were higher in those with a longer interval between first and second dose (median EU for 8-12, 15-25, and 44-46 weeks were 923 [IQR 525-1764], 1860 [IQR 917-4934] and 3738 [IQR 1824-6625] respectively). 90 participants received a third dose and antibody titres were significantly higher following a third dose (FRNT50 612 [IQR 351-920]) when compared with the response 28 days after a second dose (FRNT 50 319 [IQR 176-591]. T-cell responses were also boosted after a third dose. Reactogenicity after a late second dose or a third dose was lower than reactogenicity after a first dose.Interpretation: A longer delay before the second dose of ChAdOx1 nCoV-19 leads to an increased antibody titre after the second dose. A third dose of ChAdOx1 nCoV-19 induces antibodies to a level that correlate with high efficacy after second dose and boosts T-cell responses.Funding: UK Research and Innovation (MC_PC_19055), Engineering and Physical Sciences Research Council (EP/R013756/1), National Institute for Health Research (COV19 OxfordVacc-01), Coalition for Epidemic Preparedness Innovations (Outbreak Response To Novel Coronavirus (COVID-19)), National Institute for Health Research Oxford Biomedical Research Centre (BRC4 Vaccines Theme), Thames Valley and South Midland’s NIHR Clinical Research Network, and AstraZeneca. The views expressed in this publication are those of the authors and not necessarily those of the NIHR or the UK Department of Health and Social Care.Declaration of Interest: Oxford University has entered into a partnership with AstraZeneca for further development of ChAdOx1 nCoV-19. AstraZeneca reviewed the data from the study and the final manuscript before submission, but the authors retained editorial control. SCG and AVSH are cofounders of and shareholders in Vaccitech (collaborators in the early development of this vaccine candidate) and named as inventors on a patent covering use of ChAdOx1-vectored vaccines (PCT/GB2012/000467) and a patent application covering this SARS-CoV-2 vaccine (SCG only). TL is named as an inventor on a patent covering use of ChAdOx1-vectored vaccines (PCT/GB2012/000467) and was a consultant to Vaccitech. PMF is a consultant to Vaccitech. AJP is Chair of the UK Department of Health and Social Care’s JCVI, but does not participate in policy advice on coronavirus vaccines, and is a member of the WHO Strategic Advisory Group of Experts (SAGE). AJP is a NIHR Senior Investigator.Ethical Approval: In the UK, the COV001 and COV002 studies were approved by the South Central Berkshire Research Ethics Committee (COV001 reference 20/SC/0145, March 23, 2020; and COV002 reference 20/SC/0179; conditional approval April 8, full approval April 19, 2020).


Subject(s)
COVID-19
7.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.06.21.21258528

ABSTRACT

Background: Although 6 COVID-19 vaccines have been approved by the World Health Organisation as of 7th June 2021, global supply remains limited. An understanding of the immune response associated with protection could facilitate rapid licensure of new vaccines. Methods: Data from a randomised efficacy trial of ChAdOx1 nCoV-19 (AZD1222) vaccine in the UK was analysed to determine the antibody levels associated with protection against SARS-CoV-2. Anti-spike and anti-RBD IgG by multiplex immunoassay, pseudovirus and live neutralizing antibody at 28 days after the second dose were measured in infected and non-infected vaccine recipients. Weighted generalised additive models for binary data were applied to outcome. Cubic spline smoothed log antibody levels, and baseline risk of exposure were the predictor variables with weights applied to account for selection bias in sample processing. Results: Higher levels of all immune markers were correlated with a reduced risk of symptomatic infection. Vaccine efficacy of 80% against primary symptomatic COVID-19 was achieved with antibody level of 40923 (95% CI: 16748, 125017) and 63383 (95% CI: 16903, not computed (NC)) for anti-spike and anti-RBD, and 185 (95% CI: NC, NC) and 247 (95% CI: 101, NC) for pseudo- and live-neutralisation assays respectively. Antibody responses did not correlate with overall protection against asymptomatic infection. Conclusions: Correlates of protection can be used to bridge to new populations using validated assays. The data can be used to extrapolate efficacy estimates for new vaccines where large efficacy trials cannot be conducted. More work is needed to assess correlates for emerging variants.


Subject(s)
COVID-19
9.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-612205.v1

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is normally controlled by effective host immunity including innate, humoral and cellular responses. However, the trajectories and correlates of acquired immunity, and the capacity of memory responses months after infection to neutralise variants of concern - which has important public health implications - is not fully understood. To address this, we studied a cohort of 78 UK healthcare workers who presented in April to June 2020 with symptomatic PCR-confirmed infection or who tested positive during an asymptomatic screening programme and tracked virus-specific B and T cell responses longitudinally at 5-6 time points each over 6 months, prior to vaccination. We observed a highly variable range of responses, some of which - T cell interferon-gamma (IFN-γ) ELISpot, N-specific antibody waned over time across the cohort, while others (spike-specific antibody, B cell memory ELISpot) were stable. In such cohorts, antiviral antibody has been linked to protection against re-infection. We used integrative analysis and a machine-learning approach (SIMON - Sequential Iterative Modeling Over Night) to explore this heterogeneity and to identify predictors of sustained immune responses. Hierarchical clustering defined a group of high and low antibody responders, which showed stability over time regardless of clinical presentation. These antibody responses correlated with IFN-γ ELISpot measures of T cell immunity and represent a subgroup of patients with a robust trajectory for longer term immunity. Importantly, this immune-phenotype associates with higher levels of neutralising antibodies not only against the infecting (Victoria) strain but also against variants B.1.1.7 (alpha) and B.1.351 (beta). Overall memory responses to SARS-CoV-2 show distinct trajectories following early priming, that may define subsequent protection against infection and severe disease from novel variants.


Subject(s)
COVID-19
12.
- The COvid-19 Multi-omics Blood ATlas (COMBAT) Consortium; David J Ahern; Zhichao Ai; Mark Ainsworth; Chris Allan; Alice Allcock; Azim Ansari; Carolina V Arancibia-Carcamo; Dominik Aschenbrenner; Moustafa Attar; J. Kenneth Baillie; Eleanor Barnes; Rachael Bashford-Rogers; Archana Bashyal; Sally Beer; Georgina Berridge; Amy Beveridge; Sagida Bibi; Tihana Bicanic; Luke Blackwell; Paul Bowness; Andrew Brent; Andrew Brown; John Broxholme; David Buck; Katie L Burnham; Helen Byrne; Susana Camara; Ivan Candido Ferreira; Philip Charles; Wentao Chen; Yi-Ling Chen; Amanda Chong; Elizabeth Clutterbuck; Mark Coles; Christopher P Conlon; Richard Cornall; Adam P Cribbs; Fabiola Curion; Emma E Davenport; Neil Davidson; Simon Davis; Calliope Dendrou; Julie Dequaire; Lea Dib; James Docker; Christina Dold; Tao Dong; Damien Downes; Alexander Drakesmith; Susanna J Dunachie; David A Duncan; Chris Eijsbouts; Robert Esnouf; Alexis Espinosa; Rachel Etherington; Benjamin Fairfax; Rory Fairhead; Hai Fang; Shayan Fassih; Sally Felle; Maria Fernandez Mendoza; Ricardo Ferreira; Roman Fischer; Thomas Foord; Aden Forrow; John Frater; Anastasia Fries; Veronica Gallardo Sanchez; Lucy Garner; Clementine Geeves; Dominique Georgiou; Leila Godfrey; Tanya Golubchik; Maria Gomez Vazquez; Angie Green; Hong Harper; Heather A Harrington; Raphael Heilig; Svenja Hester; Jennifer Hill; Charles Hinds; Clare Hird; Ling-Pei Ho; Renee Hoekzema; Benjamin Hollis; Jim Hughes; Paula Hutton; Matthew Jackson; Ashwin Jainarayanan; Anna James-Bott; Kathrin Jansen; Katie Jeffery; Elizabeth Jones; Luke Jostins; Georgina Kerr; David Kim; Paul Klenerman; Julian C Knight; Vinod Kumar; Piyush Kumar Sharma; Prathiba Kurupati; Andrew Kwok; Angela Lee; Aline Linder; Teresa Lockett; Lorne Lonie; Maria Lopopolo; Martyna Lukoseviciute; Jian Luo; Spyridoula Marinou; Brian Marsden; Jose Martinez; Philippa Matthews; Michalina Mazurczyk; Simon McGowan; Stuart McKechnie; Adam Mead; Alexander J Mentzer; Yuxin Mi; Claudia Monaco; Ruddy Montadon; Giorgio Napolitani; Isar Nassiri; Alex Novak; Darragh O'Brien; Daniel O'Connor; Denise O'Donnell; Graham Ogg; Lauren Overend; Inhye Park; Ian Pavord; Yanchun Peng; Frank Penkava; Mariana Pereira Pinho; Elena Perez; Andrew J Pollard; Fiona Powrie; Bethan Psaila; T. Phuong Quan; Emmanouela Repapi; Santiago Revale; Laura Silva-Reyes; Jean-Baptiste Richard; Charlotte Rich-Griffin; Thomas Ritter; Christine S Rollier; Matthew Rowland; Fabian Ruehle; Mariolina Salio; Stephen N Sansom; Alberto Santos Delgado; Tatjana Sauka-Spengler; Ron Schwessinger; Giuseppe Scozzafava; Gavin Screaton; Anna Seigal; Malcolm G Semple; Martin Sergeant; Christina Simoglou Karali; David Sims; Donal Skelly; Hubert Slawinski; Alberto Sobrinodiaz; Nikolaos Sousos; Lizzie Stafford; Lisa Stockdale; Marie Strickland; Otto Sumray; Bo Sun; Chelsea Taylor; Stephen Taylor; Adan Taylor; Supat Thongjuea; Hannah Thraves; John A Todd; Adriana Tomic; Orion Tong; Amy Trebes; Dominik Trzupek; Felicia A Tucci; Lance Turtle; Irina Udalova; Holm Uhlig; Erinke van Grinsven; Iolanda Vendrell; Marije Verheul; Alexandru Voda; Guanlin Wang; Lihui Wang; Dapeng Wang; Peter Watkinson; Robert Watson; Michael Weinberger; Justin Whalley; Lorna Witty; Katherine Wray; Luzheng Xue; Hing Yuen Yeung; Zixi Yin; Rebecca K Young; Jonathan Youngs; Ping Zhang; Yasemin-Xiomara Zurke.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.05.11.21256877

ABSTRACT

Treatment of severe COVID-19 is currently limited by clinical heterogeneity and incomplete understanding of potentially druggable immune mediators of disease. To advance this, we present a comprehensive multi-omic blood atlas in patients with varying COVID-19 severity and compare with influenza, sepsis and healthy volunteers. We identify immune signatures and correlates of host response. Hallmarks of disease severity revealed cells, their inflammatory mediators and networks as potential therapeutic targets, including progenitor cells and specific myeloid and lymphocyte subsets, features of the immune repertoire, acute phase response, metabolism and coagulation. Persisting immune activation involving AP-1/p38MAPK was a specific feature of COVID-19. The plasma proteome enabled sub-phenotyping into patient clusters, predictive of severity and outcome. Tensor and matrix decomposition of the overall dataset revealed feature groupings linked with disease severity and specificity. Our systems-based integrative approach and blood atlas will inform future drug development, clinical trial design and personalised medicine approaches for COVID-19.


Subject(s)
COVID-19 , Sepsis
13.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.05.04.21256571

ABSTRACT

It is unclear whether prior endemic coronavirus infections affect COVID-19 severity. Here, we show that in cases of fatal COVID-19, antibody responses to the SARS-COV-2 spike are directed against epitopes shared with endemic beta-coronaviruses in the S2 subunit of the SARS-CoV-2 spike protein. This immune response is associated with the compromised production of a de novo SARS-CoV-2 spike response among individuals with fatal COVID-19 outcomes.


Subject(s)
COVID-19
14.
ssrn; 2021.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3829931

ABSTRACT

Background: The ChAdOx1 nCoV-19 (AZD1222) vaccine is immunogenic and protects against COVID-19. However, data on vaccine immunogenicity are needed for the 40 million people living with HIV (PWH), who may have less functional immunity and more associated co-morbidities than the general population. Methods: Between the 5th and 24th November 2020, 54 adults with HIV, aged 18-55 years, were enrolled into a single arm open label vaccination study within the protocol of the larger phase 2/3 COV002 trial. A prime-boost regimen of ChAdOx1 nCoV-19, with two doses (5 × 1010 vp) was given 4-6 weeks apart. All participants were on antiretroviral therapy (ART) with undetectable plasma HIV viral loads and CD4+ T cell counts >350 cells/µl at enrolment. Data were captured on adverse events. Humoral responses were measured by anti-spike IgG ELISA and antibody-mediated live virus neutralisation. Cell-mediated immune responses were measured by ex-vivo interferon-γ enzyme-linked immunospot assay (ELISpot) and T cell proliferation. All outcomes were compared with a HIV uninfected group from the main COV002 study.Findings: 54 participants with HIV (median age 42.5 years (IQR 37.2-49.8)) received two doses of ChAdOx1 nCoV-19. Median CD4+ T cell count at enrolment was 694 cells/µl (IQR 562-864). Results are reported for 56 days of follow-up. Local and systemic reactions occurring during the first 7 days after prime vaccination included pain at the injection site (49%), fatigue (47%), headache (47%), malaise (34%), chills (23%), and muscle or (36%) joint pain (9%), the frequencies of which were similar to the HIV-negative participants. There were no serious adverse events. Anti-spike IgG responses by ELISA peaked at Day 42 (median 1440 ELISA units, IQR 704-2728) and were sustained out to Day 56. There was no correlation with CD4+ T cell count or age and the magnitude of the anti-spike IgG response at Day 56 (P>0.05 for both). ELISpot and T cell proliferative responses peaked between Day 14 and 28 after prime and were sustained through to Day 56. When compared to participants without HIV there was no statistical difference in magnitude or persistence of SARS-CoV-2 spike-specific humoral or cellular responses (P>0.05 for all analyses).Interpretation: In this study of PWH, vaccination with ChAdOx1 nCoV-19 was well tolerated and there was no difference in humoral and cell-mediated immune responses compared to an adult cohort without HIV who received the same vaccination regime. Trial Registration: Trial Registration number is NCT04400838. Funding: UK Research and Innovation, National Institutes for Health Research (NIHR), Coalition for Epidemic Preparedness Innovations, NIHR Oxford Biomedical Research Centre, Thames Valley and South Midlands NIHR Clinical Research Network, and AstraZeneca. The views expressed are those of the author(s) and not necessarily those of the NIHR or the Department of Health and Social Care.Declaration of Interest: Oxford University has entered into a partnership with AstraZeneca for further development of ChAdOx1 nCoV-19 (AZD1222). AstraZeneca reviewed the data from the study and the final manuscript before 474 submission, but the authors retained editorial control. SCG is cofounder of Vaccitech (a collaborator in the early development of this vaccine candidate) and named as an inventor on a patent covering use of ChAdOx1-vectored vaccines (PCT/GB2012/000467) and a patent application covering this SARS-CoV-2 vaccine. TL is named as an inventor on a patent application covering this SARS-CoV-2 vaccine and was consultant to Vaccitech. PMF is a consultant to Vaccitech. AJP is Chair of the UK Department of Health and Social Care’s JCVI, but does not participate in policy advice on coronavirus vaccines, and is a member of the WHO Strategic Advisory Group of Experts (SAGE). AVSH is a cofounder of and consultant to Vaccitech and is named as an inventor on a patent covering design and use of ChAdOx1-vectored vaccines (PCT/GB2012/000467).Ethical Approval: Written informed consent was obtained from all participants, and the trial was done in accordance with the principles of the Declaration of Helsinki and Good Clinical Practice. This study was approved in the UK by the Medicines and Healthcare products Regulatory Agency (reference 21584/0424/001-0001) and the South Central Berkshire Research Ethics Committee (reference 20/SC/0145). Vaccine use was authorised by Genetically Modified Organisms Safety Committees at each participating site.


Subject(s)
HIV Infections , COVID-19 , Hemoglobin SC Disease
16.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.03.12.435194

ABSTRACT

Terminating the SARS-CoV-2 pandemic relies upon pan-global vaccination. Current vaccines elicit neutralizing antibody responses to the virus spike derived from early isolates. However, new strains have emerged with multiple mutations: P.1 from Brazil, B.1.351 from South Africa and B.1.1.7 from the UK (12, 10 and 9 changes in the spike respectively). All have mutations in the ACE2 binding site with P.1 and B.1.351 having a virtually identical triplet: E484K, K417N/T and N501Y, which we show confer similar increased affinity for ACE2. We show that, surprisingly, P.1 is significantly less resistant to naturally acquired or vaccine induced antibody responses than B.1.351 suggesting that changes outside the RBD impact neutralisation. Monoclonal antibody 222 neutralises all three variants despite interacting with two of the ACE2 binding site mutations, we explain this through structural analysis and use the 222 light chain to largely restore neutralization potency to a major class of public antibodies.

17.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-226857.v1

ABSTRACT

Both natural infection with SARS-CoV-2 and immunization with a number of vaccines induce protective immunity. However, the ability of such immune responses to recognize and therefore protect against emerging variants is a matter of increasing importance. Such variants of concern (VOC) include isolates of lineage B1.1.7, first identified in the UK, and B1.351, first identified in South Africa. Our data confirm that VOC, particularly those with substitutions at residues 484 and 417 escape neutralization by antibodies directed to the ACE2-binding Class 1 and the adjacent Class 2 epitopes but are susceptible to neutralization by the generally less potent antibodies directed to Class 3 and 4 epitopes on the flanks RBD. To address this potential threat, we sampled a SARS-CoV-2 uninfected UK cohort recently vaccinated with BNT162b2 (Pfizer-BioNTech, two doses delivered 18-28 days apart), alongside a cohort naturally infected in the first wave of the epidemic in Spring 2020. We tested antibody and T cell responses against a reference isolate (VIC001) representing the original circulating lineage B and the impact of sequence variation in these two VOCs. We identified a reduction in antibody neutralization against the VOCs which was most evident in the B1.351 variant. However, the majority of the T cell response was directed against epitopes conserved across all three strains. The reduction in antibody neutralization was less marked in post-boost vaccine-induced than in naturally-induced immune responses and could be largely explained by the potency of the homotypic antibody response. However, after a single vaccination, which induced only modestly neutralizing homotypic antibody titres, neutralization against the VOCs was completely abrogated in the majority of vaccinees. These data indicate that VOCs may evade protective neutralising responses induced by prior infection, and to a lesser extent by immunization, particularly after a single vaccine, but the impact of the VOCs on T cell responses appears less marked. The results emphasize the need to generate high potency immune responses through vaccination in order to provide protection against these and other emergent variants. We observed that two doses of vaccine also induced a significant increase in binding antibodies to spike of both SARS-CoV-1 & MERS, in addition to the four common coronaviruses currently circulating in the UK. The impact of antigenic imprinting on the potency of humoral and cellular heterotypic protection generated by the next generation of variant-directed vaccines remains to be determined.

18.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-224655.v1

ABSTRACT

Both natural infection with SARS-CoV-2 and immunization with a number of vaccines induce protective immunity. However, the ability of such immune responses to recognize and therefore protect against emerging variants is a matter of increasing importance. Such variants of concern (VOC) include isolates of lineage B1.1.7, first identified in the UK, and B1.351, first identified in South Africa. Our data confirm that VOC, particularly those with substitutions at residues 484 and 417 escape neutralization by antibodies directed to the ACE2-binding Class 1 and the adjacent Class 2 epitopes but are susceptible to neutralization by the generally less potent antibodies directed to Class 3 and 4 epitopes on the flanks RBD. To address this potential threat, we sampled a SARS-CoV-2 uninfected UK cohort recently vaccinated with BNT162b2 (Pfizer-BioNTech, two doses delivered 18-28 days apart), alongside a cohort naturally infected in the first wave of the epidemic in Spring 2020. We tested antibody and T cell responses against a reference isolate (VIC001) representing the original circulating lineage B and the impact of sequence variation in these two VOCs. We identified a reduction in antibody neutralization against the VOCs which was most evident in the B1.351 variant. However, the majority of the T cell response was directed against epitopes conserved across all three strains. The reduction in antibody neutralization was less marked in post-boost vaccine-induced than in naturally-induced immune responses and could be largely explained by the potency of the homotypic antibody response. However, after a single vaccination, which induced only modestly neutralizing homotypic antibody titres, neutralization against the VOCs was completely abrogated in the majority of vaccinees. These data indicate that VOCs may evade protective neutralising responses induced by prior infection, and to a lesser extent by immunization, particularly after a single vaccine, but the impact of the VOCs on T cell responses appears less marked. The results emphasize the need to generate high potency immune responses through vaccination in order to provide protection against these and other emergent variants. We observed that two doses of vaccine also induced a significant increase in binding antibodies to spike of both SARS-CoV-1 & MERS, in addition to the four common coronaviruses currently circulating in the UK. The impact of antigenic imprinting on the potency of humoral and cellular heterotypic protection generated by the next generation of variant-directed vaccines remains to be determined.

19.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-91353.v2

ABSTRACT

Serological detection of antibodies to SARS-CoV-2 is essential for establishing rates of seroconversion in populations, detection of seroconversion after vaccination, and for seeking evidence for a level of antibody that may be protective against COVID-19 disease. Several high-performance commercial tests have been described, but these require centralised laboratory facilities that are comparatively expensive, and therefore not available universally. Red cell agglutination tests have a long history in blood typing, and general serology through linkage of reporter molecules to the red cell surface. They do not require special equipment, are read by eye, have short development times, low cost and can be applied as a Point of Care Test (POCT). We describe a red cell agglutination test for the detection of antibodies to the SARS-CoV-2 receptor binding domain (RBD). We show that the Haemagglutination Test (HAT) has a sensitivity of 90% and specificity of 99% for detection of antibodies after a PCR diagnosed infection. The HAT can be titrated, detects rising titres in the first five days of hospital admission, correlates well with a commercial test that detects antibodies to the RBD, and can be applied as a point of care test. The developing reagent is composed of a previously described nanobody to a conserved glycophorin A epitope on red cells, linked to the RBD from SARS-CoV-2. It can be lyophilised for ease of shipping. We have scaled up production of this reagent to one gram, which is sufficient for ten million tests, at a cost of ~0.27 UK pence per test well. Aliquots of this reagent are ready to be supplied to qualified groups anywhere in the world that need to detect antibodies to SARS-CoV-2, but do not have the facilities for high throughput commercial tests.


Subject(s)
COVID-19
20.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.10.02.20205831

ABSTRACT

Serological detection of antibodies to SARS-CoV-2 is essential for establishing rates of seroconversion in populations, detection of seroconversion after vaccination, and for seeking evidence for a level of antibody that may be protective against COVID-19 disease. Several high-performance commercial tests have been described, but these require centralised laboratory facilities that are comparatively expensive, and therefore not available universally. Red cell agglutination tests have a long history in blood typing, and general serology through linkage of reporter molecules to the red cell surface. They do not require special equipment, are read by eye, have short development times, low cost and can be applied as a Point of Care Test (POCT). We describe a red cell agglutination test for the detection of antibodies to the SARS-CoV-2 receptor binding domain (RBD). We show that the Haemagglutination Test (HAT) has a sensitivity of 90% and specificity of 99% for detection of antibodies after a PCR diagnosed infection. The HAT can be titrated, detects rising titres in the first five days of hospital admission, correlates well with a commercial test that detects antibodies to the RBD, and can be applied as a point of care test. The developing reagent is composed of a previously described nanobody to a conserved glycophorin A epitope on red cells, linked to the RBD from SARS-CoV-2. It can be lyophilised for ease of shipping. We have scaled up production of this reagent to one gram, which is sufficient for ten million tests, at a cost of ~0.27 UK pence per test well. Aliquots of this reagent are ready to be supplied to qualified groups anywhere in the world that need to detect antibodies to SARS-CoV-2, but do not have the facilities for high throughput commercial tests.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL